求余的概念:
(a + b) % p = (a%p + b%p) %p
(a - b) % p = (a%p - b%p) %p
(a * b) % p = (a%p * b%p) %p
为什么要求逆元:对于一些题目,我们必须在中间过程中进行求余,否则数字太大,电脑存不下,那如果这个算式中出现除法,我们是不是对这个算式就无法计算了呢?这时候就用到了逆元。
费马曾经说过:
费马小定理
a^(p-1) ≡1 (mod p)
两边同除以a
a^(p-2) ≡1/a (mod p)
应该写a^(p-2) ≡ inv(a) (mod p)
所以inv(a) = a^(p-2) (mod p)
这个用快速幂求一下,复杂度O(logn)
代码:
LL pow_mod(LL a, LL b, LL p){//a的b次方求余p
LL ret = 1;
while(b){
if(b & 1) ret = (ret * a) % p;
a = (a * a) % p;//乘法还可以稍微优化一下
b >>= 1;
}
return ret;
}
LL Fermat(LL a, LL p){//费马求a关于b的逆元
return pow_mod(a, p-2, p);
}