大体题意:
给你a和b,让你求出X和Y,使得X + Y = a lcm(x,y) = b
思路:
看数据范围肯定不能进行暴力枚举了!
令gcd(x,y) = g;
那么
g * k1 = x;
g * k2 = y;
因为g 是最大公约数,那么k1与k2 必互质!
=> g*k1*k2 = b
=> g*k1 + g * k2 = a;
所以k1 * k2 = b / g;
k1 + k2 = a/g;
因为k1与k2 互质!
所以k1 * k2 和 k1 + k2 也一定互质(一个新学的知识点= = )
所以a/g 与b/g也互质!
那么g 就是gcd(a,b);
所以我们得出一个结论: gcd(x,y) == gcd(a,b);;
所以x + y 与 x * y都是已知的了,解一元二次方程即可!
#include <bits/stdc++.h> using namespace std; typedef long long ll; ll gcd(ll a,ll b){ return !b ? a : gcd(b, a%b); } int main(){ ll a,b; while (~scanf("%lld %lld",&a, &b)){ int g = gcd(a,b); ll B = b * g; ll q = a*a - 4LL * B; if (q < 0) { puts("No Solution"); continue; } bool ok = 1; ll tmp = sqrt(q); if (tmp * tmp != q) ok = 0; ll a1 = (a + tmp); ll a2 = (a - tmp); if (a1 & 1 || a2 & 1) ok = 0; ll ans1 = min(a1,a2); ll ans2 = max(a1,a2); if (ok)printf("%lld %lld\n",ans1/2,ans2/2); else puts("No Solution"); } return 0; }