笔试数列题技巧 1. 熟悉平方,立方,开方,质数关系: 平方:1-1, 2-4, 3-9, 4-16, 5-25, 6-36, 7-49, 8-64, 9-81, 10-100, 11-121, 12-144, 13-169… 立方:1-1, 2-8, 3-27, 4-64, 5-125, 6-216… 质数:1,3,5,7,9,11,13,17,19,29… 2. 熟悉加减乘除,尤其是2倍或者2倍加1,前两数之和等
具体实例: 1. 等差: 数列为等差或者前后两数之差为等差,等比,质数数列 8,10,14,20,28,( ) 108,96,84,72,( ) 5,6,9,14,21,( ) 2. 求和或差:每一项为前两项或三项的和或者差 1,3,4,7,11,( ) 3,5,6,14,( ),45 5,3,2,1,1,( ) 3. 等比关系: 1,2,4,8,( ) 8,12,18,27,( ) 4.求积或商:每一项为前两项或三项的积或者商,当看到小数时考虑除法 2,4,8,32,() 50,25,12,5,( ) 5. 混合运算 1,6,7,43,( )——–后一项为前两项的积加1 1,9,25,49,( )———–质数数列平方 0,1,2,9,( )———–后一项为前一项立方加1 6. 遇见分数:分别比较分母和分子,考虑通分 1/2, 4/3, 9/4,16/5,( ) 2/3, 1/2, 2/5, 1/3,( ) 7. 拆分为两个数列,分别找到规律,其中一列可能无规律 1,3,2,9,4,27,8,( ) 33,36,34,35,35,34,( ) 8. 比较变态的情况 1,1,3,7,17,( )——–第三项为第二项*2加第一项 4,6,10,18,34,()————-等差与等比组合
============================== 搜罗到一些较复杂的题
1, 增幅(包括减幅)一般做加减。 基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。 例1:-8,15,39,65,94,128,170,() A.180 B.210 C. 225 D 256 解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出 1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是 170+55=225,选C。 总结:做差不会超过三级;一些典型的数列要熟记在心
2, 增幅较大做乘除 例2:0.25,0.25,0.5,2,16,() A.32 B. 64 C.128 D.256 解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=16,因此原数列下一项是16*16=256 总结:做商也不会超过三级
3, 增幅很大考虑幂次数列 例3:2,5,28,257,() A.2006 B。1342 C。3503 D。3126 解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、 8,2附近有1、4。而数列的每一项必与其项数有关,所以与原数列相关的幂次数列应是1,4,27,256(原数列各项加1所得)即 1^1,2^2,3^3,4^4,下一项应该是5^5,即3125,所以选D 总结:对幂次数要熟悉
第二步思路B:寻找视觉冲击点 注:视觉冲击点是指数列中存在着的相对特殊、与众不同的现象,这些现象往往是解题思路的导引 视觉冲击点1:长数列,项数在6项以上。基本解题思路是分组或隔项。 例4:1,2,7,13,49,24,343,() A.35 B。69 C。114 D。238 解:观察前6项相对较小,第七项突然变大,不成线性规律,考虑思路B。长数列考虑分组或隔项,尝试隔项得两个数列1,7,49,343;2,13,24,()。明显各成规律,第一个支数列是等比数列,第二个支数列是公差为11的等差数列,很快得出答案A。 总结:将等差和等比数列隔项杂糅是常见的考法。
视觉冲击点2:摇摆数列,数值忽大忽小,呈摇摆状。基本解题思路是隔项。20 5 例5:64,24,44,34,39,() 10 A.20 B。32 C 36.5 D。19 解:观察数值忽小忽大,马上隔项观察,做差如上,发现差成为一个等比数列,下一项差应为5/2=2.5,易得出答案为36.5 总结:隔项取数不一定各成规律,也有可能如此题一样综合形成规律。
视觉冲击点3:双括号。一定是隔项成规律! 例6:1,3,3,5,7,9,13,15,(),() A.19,21 B。19,23 C。21,23 D。27,30 解:看见双括号直接隔项找规律,有1,3,7,13,();3,5,9,15,(),很明显都是公差为2的二级等差数列,易得答案21,23,选C
例7:0,9,5,29,8,67,17,(),() A.125,3 B。129,24 C。84,24 D。172,83 解:注意到是摇摆数列且有双括号,义无反顾地隔项找规律!有0,5,8,17,();9,29,67,()。支数列二数值较大,规律较易显现,注意到增幅较大,考虑乘除或幂次数列,脑中闪过8,27,64,发现支数列二是2^3+1,3^3+2,4^3+3的变式,下一项应是5^3+4=129。直接选B。回头再看会发现支数列一可以还原成1-1,4+1,9-1,16+1,25-1. 总结:双括号隔项找规律一般只确定支数列其一即可,为节省时间,另一支数列可以忽略不计
视觉冲击点4:分式。 类型(1):整数和分数混搭,提示做乘除。 例8:1200,200,40,(),10/3 A.10 B。20 C。30 D。5 解:整数和分数混搭,马上联想做商,很易得出答案为10
类型(2):全分数。解题思路为:能约分的先约分;能划一的先划一;突破口在于不宜变化的分数,称作基准数;分子或分母跟项数必有关系。 例9:3/15,1/3,3/7,1/2,() A.5/8 B。4/9 C。15/27 D。-3 解:能约分的先约分3/15=1/5;分母的公倍数比较大,不适合划一;突破口为3/7,因为分母较大,不宜再做乘积,因此以其作为基准数,其他分数围绕它变化;再找项数的关系3/7的分子正好是它的项数,1/5的分子也正好它的项数,于是很快发现分数列可以转化为1/5,2/6,3/7,4/8,下一项是5 /9,即15/27
例10:-4/9,10/9,4/3,7/9,1/9 A.7/3 B 10/9 C -5/18 D -2 解:没有可约分的;但是分母可以划一,取出分子数列有-4,10,12,7,1,后项减前项得 14,2,-5,-6,(-3.5),(-0.5) 与分子数列比较可知下一项应是7/(-2)=-3.5,所以分子数列下一项是1+(-3.5)= -2.5。因此(-2.5)/9= -5/18
视觉冲击点5:正负交叠。基本思路是做商。 例11:8/9, -2/3, 1/2, -3/8,() A 9/32 B 5/72 C 8/32 D 9/23 解:正负交叠,立马做商,发现是一个等比数列,易得出A
视觉冲击点6:根式。 类型(1)数列中出现根数和整数混搭,基本思路是将整数化为根数,将根号外数字移进根号内 例12:0 3 1 6 √2 12 ( ) ( ) 2 48 A. √3 24 B.√3 36 C.2 24 D.2 36 解:双括号先隔项有0,1,√2,(),2;3,6,12,(),48.支数列一即是根数和整数混搭类型,以√2为基准数,其他数围绕它变形,将整数划一为根数有√0 √1 √2 ()√4,易知应填入√3;支数列二是明显的公比为2的等比数列,因此答案为A
类型(2)根数的加减式,基本思路是运用平方差公式:a^2-b^2=(a+b)(a-b) 例13:√2-1,1/(√3+1),1/3,() A(√5-1)/4 B 2 C 1/(√5-1) D √3 解:形式划一:√2-1=(√2-1)(√2+1)/(√2+1)=(2-1)/ (√2+1)=1/(√2+1),这是根式加减式的基本变形形式,要考就这么考。同时,1/3=1/(1+2)=1/(1+√4),因此,易知下一项是1 /(√5+1)=( √5-1)/[( √5)^2-1]= (√5-1)/4.
视觉冲击点7:首一项或首两项较小且接近,第二项或第三项突然数值变大。基本思路是分组递推,用首一项或首两项进行五则运算(包括乘方)得到下一个数。 例14:2,3,13,175,() A.30625 B。30651 C。30759 D。30952 解:观察,2,3很接近,13突然变大,考虑用2,3计算得出13有2*5+3=3,也有3^2+2*2=13等等,为使3,13,175也成规律,显然为13^2+3*2=175,所以下一项是175^2+13*2=30651 总结:有时递推运算规则很难找,但不要动摇,一般这类题目的规律就是如此。
视觉冲击点8:纯小数数列,即数列各项都是小数。基本思路是将整数部分和小数部分分开考虑,或者各成单独的数列或者共同成规律。
例15:1.01,1.02,2.03,3.05,5.08,() A.8.13 B。 8.013 C。7.12 D 7.012 解:将整数部分抽取出来有1,1,2,3,5,(),是一个明显的和递推数列,下一项是8,排除C、D;将小数部分抽取出来有1,2,3,5,8,()又是一个和递推数列,下一项是13,所以选A。 总结:该题属于整数、小数部分各成独立规律
例16:0.1,1.2,3.5,8.13,( ) A 21.34 B 21.17 C 11.34 D 11.17 解:仍然是将整数部分与小数部分拆分开来考虑,但在观察数列整体特征的时候,发现数字非常像一个典型的和递推数列,于是考虑将整数和小树部分综合起来考虑,发现有新数列0,1,1,2,3,5,8,13,(),(),显然下两个数是8+13=21,13+21=34,选A 总结:该题属于整数和小数部分共同成规律
视觉冲击点9:很像连续自然数列而又不连贯的数列,考虑质数或合数列。 例17:1,5,11,19,28,(),50 A.29 B。38 C。47 D。49 解:观察数值逐渐增大呈线性,且增幅一般,考虑作差得4,6,8,9,……,很像连续自然数列而又缺少5、7,联想和数列,接下来应该是10、12,代入求证28+10=38,38+12=50,正好契合,说明思路正确,答案为38.
视觉冲击点10:大自然数,数列中出现3位以上的自然数。因为数列题运算强度不大,不太可能用大自然数做运算,因而这类题目一般都是考察微观数字结构。 例18:763951,59367,7695,967,() A.5936 B。69 C。769 D。76 解:发现出现大自然数,进行运算不太现实,微观地考察数字结构,发现后项分别比前项都少一位数,且少的是1,3,5,下一个缺省的数应该是7;另外缺省一位数后,数字顺序也进行颠倒,所以967去除7以后再颠倒应该是69,选B。
例19:1807,2716,3625,() A.5149 B。4534 C。4231 D。5847 解:四位大自然数,直接微观地看各数字关系,发现每个四位数的首两位和为9,后两位和为7,观察选项,很快得出选B。
第三步:另辟蹊径。 一般来说完成了上两步,大多数类型的题目都能找到思路了,可是也不排除有些规律不容易直接找出来,此时若把原数列稍微变化一下形式,可能更易看出规律。
变形一:约去公因数。数列各项数值较大,且有公约数,可先约去公约数,转化成一个新数列,找到规律后再还原回去。 例20:0,6,24,60,120,() A.186 B。210 C。220 D。226 解:该数列因各项数值较大,因而拿不准增幅是大是小,但发现有公约数6,约去后得0,1,4,10,20,易发现增幅一般,考虑做加减,很容易发现是一个二级等差数列,下一项应是20+10+5=35,还原乘以6得210。
变形二:因式分解法。数列各项并没有共同的约数,但相邻项有共同的约数,此时将原数列各数因式分解,可帮助找到规律。 例21:2,12,36,80,() A.100 B。125 C 150 D。175 解:因式分解各项有1*2,2*2*3,2*2*3*3,2*2*2*2*5,稍加变化把形式统一一下易得1*1*2,2*2*3,3*3*4,4*4*5,下一项应该是5*5*6=150,选C。
变形三:通分法。适用于分数列各项的分母有不大的最小公倍数。 例22:1/6,2/3,3/2,8/3,() A.10/3 B.25/6 C.5 D.35/6 解:发现分母通分简单,马上通分去掉分母得到一个单独的分子数列1,4,9,16,()。增幅一般,先做差的3,5,7,下一项应该是16+9=25。还原成分母为6的分数即为B。
第四步:蒙猜法,不是办法的办法。 有些题目就是百思不得其解,有的时候就剩那么一两分钟,那么是不是放弃呢?当然不能!一分万金啊,有的放矢地蒙猜往往可以救急,正确率也不低。下面介绍几种我自己琢磨的蒙猜法。 第一蒙:选项里有整数也有小数,小数多半是答案。 见例5:64,24,44,34,39,()
A.20 B。32 C 36.5 D。19 直接猜C!
例23:2,2,6,12,27,() A.42 B 50 C 58.5 D 63.5 猜:发现选项有整数有小数,直接在C、D里选择,出现“.5”的小数说明运算中可能有乘除关系,观察数列中后项除以前项不超过3倍,猜C 正解:做差得0,4,6,15。(0+4)*1.5=6 (2+6)*1.5=12 (4+6)*1.5=15 (6+15)*1.5=31.5,所以原数列下一项是27+31.5=58.5
第二蒙:数列中出现负数,选项中又出现负数,负数多半是答案。 例24:-4/9,10/9,4/3,7/9,1/9,( ) A.7/3 B.10/9 C -5/18 D.-2 猜:数列中出现负数,选项中也出现负数,在C/D两个里面猜,而观察原数列,分母应该与9有关,猜C。
第三蒙:猜最接近值。有时候貌似找到点规律,算出来的答案却不在选项中,但又跟某一选项很接近,别再浪费时间另找规律了,直接猜那个最接近的项,八九不离十! 例25:1,2,6,16,44,() A.66 B。84 C。88 D。120 猜:增幅一般,下意识地做了差有1,4,10,28。再做差3,6,18,下一项或许是(6+18)*2=42,或许是6*18=108,不论是哪个,原数列的下一项都大于100,直接猜D。
例26:0.,0,1,5,23,() A.119 B。79 C 63 D 47 猜:首两项一样,明显是一个递推数列,而从1,5递推到25必然要用乘法,而5*23=115,猜最接近的选项119
第四蒙:利用选项之间的关系蒙。 例27:0,9,5,29,8,67,17,(),() A.125,3 B129,24 C 84,24 D172 83 猜:首先注意到B,C选项中有共同的数值24,立马会心一笑,知道这是阴险的出题人故意设置的障碍,而又恰恰是给我们的线索,第二个括号一定是24!而根据之前总结的规律,双括号一定是隔项成规律,我们发现偶数项9,29,67,()后项都是前项的两倍左右,所以猜129,选B
例28:0,3,1,6,√2,12,(),(),2,48 A.√3,24 B。√3,36 C 2,24 D√2,36 猜:同上题理,第一个括号肯定是√3!而双括号隔项成规律,3,6,12,易知第二个括号是24,很快选出A