HDU5391 Zball in Tina Town(埃拉托斯尼斯判断素数)

xiaoxiao2021-02-27  310

Problem Description Tina Town is a friendly place. People there care about each other. Tina has a ball called zball. Zball is magic. It grows larger every day. On the first day, it becomes 1 time as large as its original size. On the second day,it will become 2 times as large as the size on the first day. On the n-th day,it will become n times as large as the size on the (n-1)-th day. Tina want to know its size on the (n-1)-th day modulo n.   Input The first line of input contains an integer T , representing the number of cases. The following T lines, each line contains an integer n , according to the description. T105,2n109   Output For each test case, output an integer representing the answer.   Sample Input 2 3 10   Sample Output 2 0 思路 由素数一个定理 若P是一个素数 那么(P-1)!mod P = P-1;若P是一个合数 那么这个等式结果为0 但4是唯一一个列外需要额外判断; 埃拉托斯尼斯定理:一个和数N在0-N^1/2的区间里必有 一个质数是他的因子; 所以我们可以根据这个定理来判断是不是素数,然后根据第一个定理来输出结果 #include <iostream> #include <cstdio> #include <cstring> using namespace std; int prime[1000005]; bool isPrime[1000005]; void Prime()//打印素数表 { int num = 0; memset(isPrime,true,sizeof(isPrime)); isPrime[0] = isPrime[1] = false; for(int i=2 ; i<= 1000005; i++){ if( isPrime[i] ) prime[num++] = i; for(int j=0 ; j<num ; j++){ if( i*prime[j]>1000005 ) break; isPrime[ i*prime[j] ] = false; if( i%prime[j] == 0 ) break; } } } bool check(int n)//判断N是不是素数 { int flag = 1; for(int i = 0;prime[i]*prime[i]<n;i++) { if(n%prime[i] == 0) { flag = 0; break; } } if(flag)return true; return false; } int main() { Prime(); int T; scanf("%d",&T); while(T--) { int n; scanf("%d",&n); if(n == 4)printf("2\n"); else if(check(n))printf("%d\n",n-1); else printf("0\n"); } return 0; }
转载请注明原文地址: https://www.6miu.com/read-2529.html

最新回复(0)