OpenCV双目视觉之立体校正

xiaoxiao2021-02-27  278

本文试图从宏观的视角,解释这些个问题:这个校正是干嘛的,为啥要作这个立体校正呢,以及如何做。本文分享给像我一样“白手起家”的小伙伴们,要进行更深入的研究,可以参考文章后面的干货列表。如果用一句话来解释立体校正,那么,敲黑板,划重点“立体校正就是,把实际中非共面行对准的两幅图像,校正成共面行对准。”这话读起来有点深奥,配个图,就好理解啦!(1)未校正以前左右眼视图

(2)校正后的左右眼视图

果然一图胜似千言万语啊。

       好了,到这里,第一个问题,你应该清楚了吧,不清楚的话,请举手!那么接下来第二个问题来了,我把这左右眼图像对齐了,有什么用呢?我是没事找点事情干吗?我确实是闲来没事,但是OpenCV不会。先给张图感受一下~

我们知道,立体匹配是三维重建、立体导航、非接触测距等技术的关键步骤,它通过匹配两幅或者多幅图像来获取深度信息。并且广泛应用于,工业生产自动化、流水线控制、无人驾驶汽车(测距,导航)、安防监控、遥感图像分析、机器人智能控制等方面。”立体图像校正是降低立体匹配计算复杂性的最有效方法之一。 因为当两个图像平面是完全共面行对准时,立体匹配从二维搜索降至一维搜索,并且可以过滤掉无匹配点。但是,在现实的双目立体视觉系统中,是不存在完全的共面行对准的两个摄像机图像平面的,所以我们要进行立体校正。最后一个问题,那么作为小白的我,怎么做立体校正呢?

OpenCV的大致流程是这样的: 具体做法,参考调用代码: #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include <vector> #include <string> #include <algorithm> #include <iostream> #include <iterator> #include <stdio.h> #include <stdlib.h> #include <ctype.h> using namespace cv; using namespace std; static void StereoCalib(const vector<string>& imagelist, Size boardSize, bool useCalibrated=true, bool showRectified=true) { if( imagelist.size() % 2 != 0 ) { cout << "Error: the image list contains odd (non-even) number of elements\n"; return; } bool displayCorners = true;//true; const int maxScale = 2; const float squareSize = 1.f; // Set this to your actual square size // ARRAY AND VECTOR STORAGE: vector<vector<Point2f> > imagePoints[2]; vector<vector<Point3f> > objectPoints; Size imageSize; int i, j, k, nimages = (int)imagelist.size()/2; imagePoints[0].resize(nimages); imagePoints[1].resize(nimages); vector<string> goodImageList; for( i = j = 0; i < nimages; i++ ) { for( k = 0; k < 2; k++ ) { const string& filename = imagelist[i*2+k]; Mat img = imread(filename, 0); if(img.empty()) break; if( imageSize == Size() ) imageSize = img.size(); else if( img.size() != imageSize ) { cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n"; break; } bool found = false; vector<Point2f>& corners = imagePoints[k][j]; for( int scale = 1; scale <= maxScale; scale++ ) { Mat timg; if( scale == 1 ) timg = img; else resize(img, timg, Size(), scale, scale); found = findChessboardCorners(timg, boardSize, corners, CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_NORMALIZE_IMAGE); if( found ) { if( scale > 1 ) { Mat cornersMat(corners); cornersMat *= 1./scale; } break; } } if( displayCorners ) { cout << filename << endl; Mat cimg, cimg1; cvtColor(img, cimg, COLOR_GRAY2BGR); drawChessboardCorners(cimg, boardSize, corners, found); double sf = 640./MAX(img.rows, img.cols); resize(cimg, cimg1, Size(), sf, sf); imshow("corners", cimg1); char c = (char)waitKey(500); if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit exit(-1); } else putchar('.'); if( !found ) break; cornerSubPix(img, corners, Size(11,11), Size(-1,-1), TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 30, 0.01)); } if( k == 2 ) { goodImageList.push_back(imagelist[i*2]); goodImageList.push_back(imagelist[i*2+1]); j++; } } cout << j << " pairs have been successfully detected.\n"; nimages = j; if( nimages < 2 ) { cout << "Error: too little pairs to run the calibration\n"; return; } imagePoints[0].resize(nimages); imagePoints[1].resize(nimages); objectPoints.resize(nimages); for( i = 0; i < nimages; i++ ) { for( j = 0; j < boardSize.height; j++ ) for( k = 0; k < boardSize.width; k++ ) objectPoints[i].push_back(Point3f(k*squareSize, j*squareSize, 0)); } cout << "Running stereo calibration ...\n"; Mat cameraMatrix[2], distCoeffs[2]; cameraMatrix[0] = Mat::eye(3, 3, CV_64F); cameraMatrix[1] = Mat::eye(3, 3, CV_64F); Mat R, T, E, F; double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1], cameraMatrix[0], distCoeffs[0], cameraMatrix[1], distCoeffs[1], imageSize, R, T, E, F, TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, 1e-5), CV_CALIB_FIX_ASPECT_RATIO + CV_CALIB_ZERO_TANGENT_DIST + CV_CALIB_SAME_FOCAL_LENGTH + CV_CALIB_RATIONAL_MODEL + CV_CALIB_FIX_K3 + CV_CALIB_FIX_K4 + CV_CALIB_FIX_K5); cout << "done with RMS error=" << rms << endl; // CALIBRATION QUALITY CHECK // because the output fundamental matrix implicitly // includes all the output information, // we can check the quality of calibration using the // epipolar geometry constraint: m2^t*F*m1=0 double err = 0; int npoints = 0; vector<Vec3f> lines[2]; for( i = 0; i < nimages; i++ ) { int npt = (int)imagePoints[0][i].size(); Mat imgpt[2]; for( k = 0; k < 2; k++ ) { imgpt[k] = Mat(imagePoints[k][i]); undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]); computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]); } for( j = 0; j < npt; j++ ) { double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] + imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) + fabs(imagePoints[1][i][j].x*lines[0][j][0] + imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]); err += errij; } npoints += npt; } cout << "average reprojection err = " << err/npoints << endl; // save intrinsic parameters FileStorage fs("intrinsics.yml", CV_STORAGE_WRITE); if( fs.isOpened() ) { fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] << "M2" << cameraMatrix[1] << "D2" << distCoeffs[1]; fs.release(); } else cout << "Error: can not save the intrinsic parameters\n"; Mat R1, R2, P1, P2, Q; Rect validRoi[2]; stereoRectify(cameraMatrix[0], distCoeffs[0], cameraMatrix[1], distCoeffs[1], imageSize, R, T, R1, R2, P1, P2, Q, CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]); fs.open("extrinsics.yml", CV_STORAGE_WRITE); if( fs.isOpened() ) { fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q; fs.release(); } else cout << "Error: can not save the extrinsic parameters\n"; // OpenCV can handle left-right // or up-down camera arrangements bool isVerticalStereo = fabs(P2.at<double>(1, 3)) > fabs(P2.at<double>(0, 3)); // COMPUTE AND DISPLAY RECTIFICATION if( !showRectified ) return; Mat rmap[2][2]; // IF BY CALIBRATED (BOUGUET'S METHOD) if( useCalibrated ) { // we already computed everything } // OR ELSE HARTLEY'S METHOD else // use intrinsic parameters of each camera, but // compute the rectification transformation directly // from the fundamental matrix { vector<Point2f> allimgpt[2]; for( k = 0; k < 2; k++ ) { for( i = 0; i < nimages; i++ ) std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k])); } F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0); Mat H1, H2; stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3); R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0]; R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1]; P1 = cameraMatrix[0]; P2 = cameraMatrix[1]; } //Precompute maps for cv::remap() initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]); initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]); Mat canvas; double sf; int w, h; if( !isVerticalStereo ) { sf = 600./MAX(imageSize.width, imageSize.height); w = cvRound(imageSize.width*sf); h = cvRound(imageSize.height*sf); canvas.create(h, w*2, CV_8UC3); } else { sf = 300./MAX(imageSize.width, imageSize.height); w = cvRound(imageSize.width*sf); h = cvRound(imageSize.height*sf); canvas.create(h*2, w, CV_8UC3); } for( i = 0; i < nimages; i++ ) { for( k = 0; k < 2; k++ ) { Mat img = imread(goodImageList[i*2+k], 0), rimg, cimg; remap(img, rimg, rmap[k][0], rmap[k][1], CV_INTER_LINEAR); imshow("单目相机校正",rimg); waitKey(); cvtColor(rimg, cimg, COLOR_GRAY2BGR); Mat canvasPart = !isVerticalStereo ? canvas(Rect(w*k, 0, w, h)) : canvas(Rect(0, h*k, w, h)); resize(cimg, canvasPart, canvasPart.size(), 0, 0, CV_INTER_AREA); if( useCalibrated ) { Rect vroi(cvRound(validRoi[k].x*sf), cvRound(validRoi[k].y*sf), cvRound(validRoi[k].width*sf), cvRound(validRoi[k].height*sf)); rectangle(canvasPart, vroi, Scalar(0,0,255), 3, 8); } } if( !isVerticalStereo ) for( j = 0; j < canvas.rows; j += 16 ) line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8); else for( j = 0; j < canvas.cols; j += 16 ) line(canvas, Point(j, 0), Point(j, canvas.rows), Scalar(0, 255, 0), 1, 8); imshow("双目相机校正对齐", canvas); waitKey(); char c = (char)waitKey(); if( c == 27 || c == 'q' || c == 'Q' ) break; } } static bool readStringList( const string& filename, vector<string>& l ) { l.resize(0); FileStorage fs(filename, FileStorage::READ); if( !fs.isOpened() ) return false; FileNode n = fs.getFirstTopLevelNode(); if( n.type() != FileNode::SEQ ) return false; FileNodeIterator it = n.begin(), it_end = n.end(); for( ; it != it_end; ++it ) l.push_back((string)*it); return true; } int main(int argc, char** argv) { Size boardSize; string imagelistfn; bool showRectified = true; for( int i = 1; i < argc; i++ ) { if( string(argv[i]) == "-w" ) { if( sscanf(argv[++i], "%d", &boardSize.width) != 1 || boardSize.width <= 0 ) { cout << "invalid board width" << endl; return -1; } } else if( string(argv[i]) == "-h" ) { if( sscanf(argv[++i], "%d", &boardSize.height) != 1 || boardSize.height <= 0 ) { cout << "invalid board height" << endl; return -1; } } else if( string(argv[i]) == "-nr" ) showRectified = false; else if( string(argv[i]) == "--help" ) return -1; else if( argv[i][0] == '-' ) { cout << "invalid option " << argv[i] << endl; return 0; } else imagelistfn = argv[i]; } if( imagelistfn == "" ) { imagelistfn = "stereo_calib.xml"; boardSize = Size(9, 6); } else if( boardSize.width <= 0 || boardSize.height <= 0 ) { cout << "if you specified XML file with chessboards, you should also specify the board width and height (-w and -h options)" << endl; return 0; } vector<string> imagelist; bool ok = readStringList(imagelistfn, imagelist); if(!ok || imagelist.empty()) { cout << "can not open " << imagelistfn << " or the string list is empty" << endl; return -1; } StereoCalib(imagelist, boardSize, true, showRectified); return 0; }

转载请注明原文地址: https://www.6miu.com/read-3142.html

最新回复(0)