[BZOJ4445][Scoi2015]小凸想跑步(半平面交)

xiaoxiao2021-02-27  359

题目描述

传送门

题目大意:一个凸n边形,N个顶点按照逆时针从0~n-l编号。现在小凸随机选择多边形中的某个位置,标记为P点。将P点与n个顶点各连一条边,形成N个三角形。如果这时P点,0号点,1号点形成的三角形的面 积是N个三角形中最小的一个,小凸则认为这是一次正确站位。现在小凸想知道他一次站位正确的概率是多少。

题解

设选的位置坐标为(x,y),用叉积化一下式子 (x1x)(y2y)(y1y)(x2x)(xkx)(yk+1y)(xk+1x)(yky) (y1y2yk+yk+1)x+(x2x1xk+1+xk)y+(x1y2x2y1xkyk+1+xk+1yk)0 这就是一个 ax+by+c0 的直线形式,根据abc的符号判断直线的方向,特判ab为0的情况 然后所有的直线交出来一个凸壳,求这个凸壳的面积/原先的面积就行了 这题有点卡精度,eps开1e-15

代码

#include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> using namespace std; #define N 200005 const double eps=1e-15; const double inf=1e18; int dcmp(double x) { if (x<=eps&&x>=-eps) return 0; return (x>0)?1:-1; } struct Vector { double x,y; Vector(double X=0,double Y=0) { x=X,y=Y; } }; typedef Vector Point; struct Line { Point p;Vector v; double ang; Line(Point P=Point(0,0),Vector V=Vector(0,0)) { p=P,v=V; ang=atan2(v.y,v.x); } bool operator < (const Line &a) const { return ang<a.ang; } }; Vector operator + (Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);} Vector operator - (Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);} Vector operator * (Vector a,double b){return Vector(a.x*b,a.y*b);} int n,line,cnt,l,r; double area,ans; Line L[N<<1],q[N<<1]; Point pt[N],p[N<<1],poly[N<<1]; double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;} bool Onleft(Line l,Point P) { Vector v=P-l.p; return dcmp(Cross(l.v,v))>=0; } Point GLI(Point P,Vector v,Point Q,Vector w) { Vector u=P-Q; double t=Cross(w,u)/Cross(v,w); return P+v*t; } void init() { L[++line]=Line(Point(inf,inf),Vector(-2*inf,0)); L[++line]=Line(Point(-inf,inf),Vector(0,-2*inf)); L[++line]=Line(Point(-inf,-inf),Vector(2*inf,0)); L[++line]=Line(Point(inf,-inf),Vector(0,2*inf)); } void halfp() { sort(L+1,L+line+1); q[l=r=1]=L[1]; for (int i=2;i<=line;++i) { while (l<r&&!Onleft(L[i],p[r-1])) --r; while (l<r&&!Onleft(L[i],p[l])) ++l; q[++r]=L[i]; if (!dcmp(Cross(q[r].v,q[r-1].v))) { --r; if (Onleft(q[r],L[i].p)) q[r]=L[i]; } if (l<r) p[r-1]=GLI(q[r].p,q[r].v,q[r-1].p,q[r-1].v); } while (l<r&&!Onleft(q[l],p[r-1])) --r; if (r-l<=1) return; p[r]=GLI(q[r].p,q[r].v,q[l].p,q[l].v); for (int i=l;i<=r;++i) poly[++cnt]=p[i]; } double Area(int n,Point *P) { double ans=0; for (int i=2;i<n;++i) ans+=Cross(P[i]-P[1],P[i+1]-P[1]); return fabs(ans/2); } int main() { scanf("%d",&n); for (int i=1;i<=n;++i) scanf("%lf%lf",&pt[i].x,&pt[i].y); area=Area(n,pt); for (int i=2;i<=n;++i) { int id=i,jd=i%n+1; double a=pt[1].y-pt[2].y-pt[id].y+pt[jd].y; double b=pt[2].x-pt[1].x-pt[jd].x+pt[id].x; double c=pt[1].x*pt[2].y-pt[2].x*pt[1].y-pt[id].x*pt[jd].y+pt[jd].x*pt[id].y; if (!dcmp(a)&&!dcmp(b)) continue; if (!dcmp(a)) { if (dcmp(b)>0) L[++line]=Line(Point(inf,-c/b),Vector(-2*inf,0)); else L[++line]=Line(Point(-inf,-c/b),Vector(2*inf,0)); continue; } if (!dcmp(b)) { if (dcmp(a)>0) L[++line]=Line(Point(-c/a,-inf),Vector(0,2*inf)); else L[++line]=Line(Point(-c/a,inf),Vector(0,-2*inf)); continue; } double K=-a/b,B=-c/b; double x1=0,x2=1; double y1=x1*K+B,y2=x2*K+B; Point P=Point(x1,y1),Q=Point(x2,y2); if (dcmp(-b)>0) L[++line]=Line(P,Q-P); else L[++line]=Line(Q,P-Q); } for (int i=1;i<=n;++i) L[++line]=Line(pt[i],pt[i%n+1]-pt[i]); init(); halfp(); ans=Area(cnt,poly); printf("%.4lf\n",ans/area); }
转载请注明原文地址: https://www.6miu.com/read-3247.html

最新回复(0)