Python - 深刻理解Python中的元类(metaclass)

xiaoxiao2021-02-27  328

分享一个大牛的人工智能教程。零基础!通俗易懂!风趣幽默!希望你也加入到人工智能的队伍中来!请点击http://www.captainbed.net

1.类也是对象

在理解元类之前,你需要先掌握Python中的类。Python中类的概念借鉴于Smalltalk,这显得有些奇特。在大多数编程语言中,类就是一组用来描述如何生成一个对象的代码段。在Python中这一点仍然成立:

>>> class ObjectCreator(object): … pass … >>> my_object = ObjectCreator() >>> print my_object <__main__.ObjectCreator object at 0x8974f2c>

但是,Python中的类还远不止如此。类同样也是一种对象。是的,没错,就是对象。只要你使用关键字class,Python解释器在执行的时候就会创建一个对象。下面的代码段:

>>> class ObjectCreator( object ) : … pass …

将在内存中创建一个对象,名字就是ObjectCreator。这个对象(类)自身拥有创建对象(类实例)的能力,而这就是为什么它是一个类的原因。但是,它的本质仍然是一个对象,于是乎你可以对它做如下的操作:

1)   你可以将它赋值给一个变量

2)   你可以拷贝它

3)   你可以为它增加属性

4)   你可以将它作为函数参数进行传递

下面是示例:

# 你可以打印一个类,因为它其实也是一个对象 >>> print ObjectCreator < class '__main__.ObjectCreator' > >>> def echo ( o ) : … print o … # 你可以将类做为参数传给函数 >>> echo ( ObjectCreator ) < class '__main__.ObjectCreator' > >>> print hasattr ( ObjectCreator , 'new_attribute' ) Fasle # 你可以为类增加属性 >>> ObjectCreator . new_attribute = 'foo' >>> print hasattr ( ObjectCreator , 'new_attribute' ) True >>> print ObjectCreator . new_attribute foo # 你可以将类赋值给一个变量 >>> ObjectCreatorMirror = ObjectCreator >>> print ObjectCreatorMirror ( ) < __main__ . ObjectCreator object at 0x8997b4c >

 

2.动态地创建类

因为类也是对象,你可以在运行时动态的创建它们,就像其他任何对象一样。首先,你可以在函数中创建类,使用class关键字即可。

# 返回的是类,不是类的实例 >>> def choose_class( name ) : … if name =='foo' : … class Foo ( object ) : … pass … return Foo … else : … class Bar ( object ) : … pass … return Bar … # 函数返回的是类,不是类的实例 >>> MyClass =choose_class ( 'foo' ) >>> print MyClass < class '__main__' . Foo > # 你可以通过这个类创建类实例,也就是对象 >>> print MyClass( ) < __main__ . Foo objectat 0x89c6d4c >

但这还不够动态,因为你仍然需要自己编写整个类的代码。由于类也是对象,所以它们必须是通过什么东西来生成的才对。当你使用class关键字时,Python解释器自动创建这个对象。但就和Python中的大多数事情一样,Python仍然提供给你手动处理的方法。还记得内建函数type吗?这个古老但强大的函数能够让你知道一个对象的类型是什么,就像这样:

>>> print type ( 1 ) < type 'int' > >>> print type ( "1" ) < type 'str' > >>> print type ( ObjectCreator ) < type 'type' > >>> print type ( ObjectCreator ( ) ) < class '__main__.ObjectCreator' >

这里,type有一种完全不同的能力,它也能动态的创建类。type可以接受一个类的描述作为参数,然后返回一个类。(我知道,根据传入参数的不同,同一个函数拥有两种完全不同的用法是一件很傻的事情,但这在Python中是为了保持向后兼容性)

type可以像这样工作:

type (类名 , 父类的元组(针对继承的情况,可以为空),包含属性的字典(名称和值))

比如下面的代码:

>>> class MyShinyClass( object ) : … pass

可以手动像这样创建:

>>> MyShinyClass =type ( 'MyShinyClass' ,( ) , {} ) # 返回一个类对象 >>> print MyShinyClass < class '__main__.MyShinyClass'> >>> print MyShinyClass( ) # 创建一个该类的实例 < __main__ . MyShinyClassobject at 0x8997cec>

你会发现我们使用“MyShinyClass”作为类名,并且也可以把它当做一个变量来作为类的引用。类和变量是不同的,这里没有任何理由把事情弄的复杂。

type 接受一个字典来为类定义属性,因此

>>> class Foo( object ) : … bar = True

可以翻译为:

>>> Foo = type ( 'Foo' , () , { 'bar' : True } )

并且可以将Foo当成一个普通的类一样使用:

>>> print Foo < class '__main__.Foo' > >>> print Foo. bar True >>> f = Foo ( ) >>> print f < __main__ . Foo objectat 0x8a9b84c > >>> print f. bar True

当然,你可以向这个类继承,所以,如下的代码:

>>> class FooChild( Foo ) : … pass

就可以写成:

>>> FooChild =type ( 'FooChild' ,( Foo , ) , { } ) >>> print FooChild < class '__main__.FooChild'> >>> print FooChild. bar # bar属性是由Foo继承而来 True

最终你会希望为你的类增加方法。只需要定义一个有着恰当签名的函数并将其作为属性赋值就可以了。

>>> def echo_bar( self ) : … print self . bar … >>> FooChild =type ( 'FooChild' ,( Foo , ) , { 'echo_bar' : echo_bar } ) >>> hasattr ( Foo, 'echo_bar' ) False >>> hasattr ( FooChild, 'echo_bar' ) True >>> my_foo =FooChild ( ) >>> my_foo . echo_bar( ) True

你可以看到,在Python中,类也是对象,你可以动态的创建类。这就是当你使用关键字class时Python在幕后做的事情,而这就是通过元类来实现的。

 

3.到底什么是元类(终于到主题了)

元类就是用来创建类的“东西”。你创建类就是为了创建类的实例对象,不是吗?但是我们已经学习到了Python中的类也是对象。好吧,元类就是用来创建这些类(对象)的,元类就是类的类,你可以这样理解:

MyClass = MetaClass( ) MyObject = MyClass( )

你已经看到了type可以让你像这样做:

MyClass = type( 'MyClass' , ( ) , { } )

这是因为函数type实际上是一个元类。type就是Python在背后用来创建所有类的元类。现在你想知道那为什么type会全部采用小写形式而不是Type呢?好吧,我猜这是为了和str保持一致性,str是用来创建字符串对象的类,而int是用来创建整数对象的类。type就是创建类对象的类。你可以通过检查__class__属性来看到这一点。Python中所有的东西,注意,我是指所有的东西——都是对象。这包括整数、字符串、函数以及类。它们全部都是对象,而且它们都是从一个类创建而来。

>>> age = 35 >>> age . __class__ < type 'int' > >>> name = 'bob' >>> name . __class__ < type 'str' > >>> def foo( ) : pass >>> foo . __class__ < type 'function' > >>> class Bar( object ) : pass >>> b = Bar ( ) >>> b . __class__ < class '__main__.Bar' >

现在,对于任何一个__class__的__class__属性又是什么呢?

>>> a . __class__. __class__ < type 'type' > >>> age . __class__. __class__ < type 'type' > >>> foo . __class__. __class__ < type 'type' > >>> b . __class__. __class__ < type 'type' >

因此,元类就是创建类这种对象的东西。如果你喜欢的话,可以把元类称为“类工厂”(不要和工厂类搞混了)。type就是Python的内建元类,当然了,你也可以创建自己的元类。

 

4.__metaclass__属性

你可以在写一个类的时候为其添加__metaclass__属性。

class Foo ( object) : __metaclass__ = something… [… ]

如果你这么做了,Python就会用元类来创建类Foo。小心点,这里面有些技巧。你首先写下class Foo(object),但是类对象Foo还没有在内存中创建。Python会在类的定义中寻找__metaclass__属性,如果找到了,Python就会用它来创建类Foo,如果没有找到,就会用内建的type来创建这个类。把下面这段话反复读几次。当你写如下代码时:

class Foo ( Bar) : pass

Python做了如下的操作:

Foo中有__metaclass__这个属性吗?如果是,Python会在内存中通过__metaclass__创建一个名字为Foo的类对象(我说的是类对象,请紧跟我的思路)。如果Python没有找到__metaclass__,它会继续在Bar(父类)中寻找__metaclass__属性,并尝试做和前面同样的操作。如果Python在任何父类中都找不到__metaclass__,它就会在模块层次中去寻找__metaclass__,并尝试做同样的操作。如果还是找不到__metaclass__,Python就会用内置的type来创建这个类对象。

现在的问题就是,你可以在__metaclass__中放置些什么代码呢?答案就是:可以创建一个类的东西。那么什么可以用来创建一个类呢?type,或者任何使用到type或者子类化type的东东都可以。

 

5.自定义元类

元类的主要目的就是为了当创建类时能够自动地改变类。通常,你会为API做这样的事情,你希望可以创建符合当前上下文的类。假想一个很傻的例子,你决定在你的模块里所有的类的属性都应该是大写形式。有好几种方法可以办到,但其中一种就是通过在模块级别设定__metaclass__。采用这种方法,这个模块中的所有类都会通过这个元类来创建,我们只需要告诉元类把所有的属性都改成大写形式就万事大吉了。

幸运的是,__metaclass__实际上可以被任意调用,它并不需要是一个正式的类(我知道,某些名字里带有‘class’的东西并不需要是一个class,画画图理解下,这很有帮助)。所以,我们这里就先以一个简单的函数作为例子开始。

# 元类会自动将你通常传给‘type’的参数作为自己的参数传入 def upper_attr ( future_class_name, future_class_parents , future_class_attr ) : '''返回一个类对象,将属性都转为大写形式''' # 选择所有不以'__'开头的属性 attrs = (( name , value ) for name ,value in future_class_attr. items ( ) ifnot name . startswith ( '__' ) ) # 将它们转为大写形式 uppercase_attr = dict ( ( name .upper ( ) , value) for name , value in attrs) # 通过'type'来做类对象的创建 return type (future_class_name , future_class_parents, uppercase_attr ) __metaclass__ = upper_attr # 这会作用到这个模块中的所有类 class Foo ( object) : # 我们也可以只在这里定义__metaclass__,这样就只会作用于这个类中 bar = 'bip' print hasattr ( Foo, 'bar' ) # 输出: False print hasattr ( Foo, 'BAR' ) # 输出:True f = Foo ( ) print f . BAR # 输出:'bip'

现在让我们再做一次,这一次用一个真正的class来当做元类。

# 请记住,'type'实际上是一个类,就像'str'和'int'一样 # 所以,你可以从type继承 class UpperAttrMetaClass (type ) : # __new__ 是在__init__之前被调用的特殊方法 # __new__是用来创建对象并返回之的方法 # 而__init__只是用来将传入的参数初始化给对象 # 你很少用到__new__,除非你希望能够控制对象的创建 # 这里,创建的对象是类,我们希望能够自定义它,所以我们这里改写__new__ # 如果你希望的话,你也可以在__init__中做些事情 # 还有一些高级的用法会涉及到改写__call__特殊方法,但是我们这里不用 def __new__ (upperattr_metaclass , future_class_name, future_class_parents , future_class_attr ) : attrs = (( name , value ) for name ,value in future_class_attr. items ( ) ifnot name . startswith ( '__' ) ) uppercase_attr =dict ( ( name . upper ( ) , value) for name , value in attrs) return type ( future_class_name , future_class_parents, uppercase_attr )

但是,这种方式其实不是OOP。我们直接调用了type,而且我们没有改写父类的__new__方法。现在让我们这样去处理:

class UpperAttrMetaclass (type ) : def __new__ (upperattr_metaclass , future_class_name, future_class_parents , future_class_attr ) : attrs = (( name , value ) for name ,value in future_class_attr. items ( ) ifnot name . startswith ( '__' ) ) uppercase_attr =dict ( ( name . upper ( ) , value) for name , value in attrs) # 复用type.__new__方法 # 这就是基本的OOP编程,没什么魔法 return type . __new__ ( upperattr_metaclass , future_class_name , future_class_parents, uppercase_attr )

你可能已经注意到了有个额外的参数upperattr_metaclass,这并没有什么特别的。类方法的第一个参数总是表示当前的实例,就像在普通的类方法中的self参数一样。当然了,为了清晰起见,这里的名字我起的比较长。但是就像self一样,所有的参数都有它们的传统名称。因此,在真实的产品代码中一个元类应该是像这样的:

class UpperAttrMetaclass (type ) : def __new__ (cls , name , bases , dct ): attrs = (( name , value ) for name ,value in dct . items ( ) ifnot name . startswith ( '__' ) uppercase_attr =dict ( ( name . upper ( ) , value) for name , value in attrs) return type . __new__ ( cls , name , bases ,uppercase_attr )

如果使用super方法的话,我们还可以使它变得更清晰一些,这会缓解继承(是的,你可以拥有元类,从元类继承,从type继承)

class UpperAttrMetaclass (type ) : def __new__ (cls , name , bases , dct ): attrs = (( name , value ) for name ,value in dct . items ( ) ifnot name . startswith ( '__' ) ) uppercase_attr =dict ( ( name . upper ( ) , value) for name , value in attrs) return super ( UpperAttrMetaclass , cls) . __new__ ( cls, name , bases, uppercase_attr )

就是这样,除此之外,关于元类真的没有别的可说的了。使用到元类的代码比较复杂,这背后的原因倒并不是因为元类本身,而是因为你通常会使用元类去做一些晦涩的事情,依赖于自省,控制继承等等。确实,用元类来搞些“黑暗魔法”是特别有用的,因而会搞出些复杂的东西来。但就元类本身而言,它们其实是很简单的:

1)   拦截类的创建

2)   修改类

3)   返回修改之后的类

 

6.为什么要用metaclass类而不是函数?

由于__metaclass__可以接受任何可调用的对象,那为何还要使用类呢,因为很显然使用类会更加复杂啊?这里有好几个原因:

1)意图会更加清晰。当你读到UpperAttrMetaclass(type)时,你知道接下来要发生什么。

2)你可以使用OOP编程。元类可以从元类中继承而来,改写父类的方法。元类甚至还可以使用元类。

3)你可以把代码组织的更好。当你使用元类的时候肯定不会是像我上面举的这种简单场景,通常都是针对比较复杂的问题。将多个方法归总到一个类中会很有帮助,也会使得代码更容易阅读。

4)你可以使用__new__, __init__以及__call__这样的特殊方法。它们能帮你处理不同的任务。就算通常你可以把所有的东西都在__new__里处理掉,有些人还是觉得用__init__更舒服些。

5)哇哦,这东西的名字是metaclass,肯定非善类,我要小心!

 

7.究竟为什么要使用元类?

现在回到我们的大主题上来,究竟是为什么你会去使用这样一种容易出错且晦涩的特性?好吧,一般来说,你根本就用不上它:

“元类就是深度的魔法,99%的用户应该根本不必为此操心。如果你想搞清楚究竟是否需要用到元类,那么你就不需要它。那些实际用到元类的人都非常清楚地知道他们需要做什么,而且根本不需要解释为什么要用元类。” —— Python界的领袖 Tim Peters

元类的主要用途是创建API。一个典型的例子是Django ORM。它允许你像这样定义:

class Person ( models. Model ) : name = models. CharField ( max_length = 30 ) age = models. IntegerField ( )

但是如果你像这样做的话:

guy = Person(name = 'bob', age = '35') print guy.age

这并不会返回一个IntegerField对象,而是会返回一个int,甚至可以直接从数据库中取出数据。这是有可能的,因为models.Model定义了__metaclass__, 并且使用了一些魔法能够将你刚刚定义的简单的Person类转变成对数据库的一个复杂hook。Django框架将这些看起来很复杂的东西通过暴露出一个简单的使用元类的API将其化简,通过这个API重新创建代码,在背后完成真正的工作。

 

8.小结

首先,你知道了类其实是能够创建出类实例的对象。好吧,事实上,类本身也是实例,当然,它们是元类的实例。

>>> class Foo (object) : pass >>> id ( Foo) 142630324

Python中的一切都是对象,它们要么是类的实例,要么是元类的实例,除了type。type实际上是它自己的元类,在纯Python环境中这可不是你能够做到的,这是通过在实现层面耍一些小手段做到的。其次,元类是很复杂的。对于非常简单的类,你可能不希望通过使用元类来对类做修改。你可以通过其他两种技术来修改类:

1) Monkey patching

2) Class decorators

当你需要动态修改类时,99%的时间里你最好使用上面这两种技术。当然了,其实在99%的时间里你根本就不需要动态修改类!:)

转载请注明原文地址: https://www.6miu.com/read-3270.html

最新回复(0)