欢迎使用6miu-markdown编辑器

xiaoxiao2021-02-27  498

**Android内存泄露总结(一)出现内存泄露的可能原因** 内存泄漏问题是Android开发者最烦恼的问题之一,根据以往项目经验,开发或者测试过程中经常会遇到基于OOM的App崩溃问题。该现象很明显是我们在代码实现的过程中没有考虑相关内存处理。基于以上问题现对Android内存泄漏进行排查、定位、解决等相关问题总结。 a.集合类泄漏 集合类如果仅仅有添加元素的方法,而没有相应的删除机制,导致内存被占用。如果这个集合类是全局性的变量 (比如类中的静态属性,全局性的 map 等即有静态引用或 final 一直指向它),那么没有相应的删除机制,很可能导致集合所占用的内存只增不减。比如java中的典型例子就是其中一种情况,当然实际上我们在项目中肯定不会写这样的代码,但稍不注意还是很容易出现这种情况,例如我们经常用Map和List进行数据存储等。 b.单例造成的内存泄漏 由于单例的静态特性使得其生命周期跟应用的生命周期一样长,所以如果使用不恰当的话,很容易造成内存泄漏。 public class AppManager { private static AppManager instance; private Context context; private AppManager(Context context) { this.context = context; } public static AppManager getInstance(Context context) { if (instance == null) { instance = new AppManager(context); } return instance; } } 这是一个普通的单例模式,当我们创建单例的时候,需要传入一个Context,所以这个Context的生命周期的长短很重要。如果我们传入的Application的Context,因为Application的生命周期就是整个应用的生命周期,所以这将没有任何问题。但是如果传入的是Activity的生命周期,当这个Context所对应的Activity退出时,由于该Context的引用被单例对象所持有,其生命周期等于整个应用程序的生命周期,所以当前Activity退出时它的内存并不会被回收,这样就出现了内存泄漏。正确的方式如下: public class AppManager { private static AppManager instance; private Context context; private AppManager(Context context) { this.context = context.getApplicationContext();// 使用Application 的context } public static AppManager getInstance(Context context) { if (instance == null) { instance = new AppManager(context); } return instance; } }

c.非静态内部类 有些时候我们可能会在启动频繁的Activity中,为了避免重复创建相同的数据资源,可能会出现这种写法 public class MainActivity extends AppCompatActivity { private static TestResource mResource = null; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); if(mManager == null){ mManager = new TestResource(); } //… } class TestResource { //… } } 这样就在Activity内部创建了一个非静态内部类的单例,每次启动Activity时都会使用该单例的数据,这样虽然避免了资源的重复创建,不过这种写法却会造成内存泄漏,因为非静态内部类默认会持有外部类的引用,而该非静态内部类又创建了一个静态的实例,该实例的生命周期和应用的一样长,这就导致了该静态实例一直会持有该Activity的引用,导致Activity的内存资源不能正常回收。正确的做法为:将该内部类设为静态内部类或将该内部类抽取出来封装成一个单例,如果需要用到Contex,可以使用Application中的Context。 d.匿名内部类 Android开发经常会继承实现Activity/Fragment/View,此时如果你使用了匿名类,并被异步线程持有了,那要小心了,如果没有任何措施这样一定会导致泄漏。 public class MainActivity extends Activity { … Runnable ref1 = new MyRunable(); Runnable ref2 = new Runnable() { @Override public void run() {

} }; ... }

ref1和ref2的区别是,ref2使用了匿名内部类。我们来看看运行时这两个引用的内存 可以看到,ref1没什么特别的。但ref2这个匿名类的实现对象里面多了一个引用this$0这个引用指向MainActivity.this,也就是说当前的MainActivity实例会被ref2持有,如果将这个引用再传入一个异步线程,此线程和此Acitivity生命周期不一致的时候,就造成了Activity的泄漏。 e.Handler造成的内存泄漏 Handler 的使用造成的内存泄漏问题应该说是最为常见了,很多时候我们为了避免 ANR 而不在主线程进行耗时操作,在处理网络任务或者封装一些请求回调等api都借助Handler来处理,但 Handler 不是万能的,对于 Handler 的使用代码编写一不规范即有可能造成内存泄漏。另外,我们知道 Handler、Message 和 MessageQueue 都是相互关联在一起的,万一 Handler 发送的 Message 尚未被处理,则该 Message 及发送它的 Handler 对象将被线程 MessageQueue 一直持有。 由于 Handler 属于 TLS(Thread Local Storage) 变量, 生命周期和 Activity 是不一致的。因此这种实现方式一般很难保证跟 View 或者 Activity 的生命周期保持一致,故很容易导致无法正确释放。 public class SampleActivity extends Activity {

private final Handler mLeakyHandler = new Handler() { @Override public void handleMessage(Message msg) { // ... } } @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); // Post a message and delay its execution for 10 minutes. mLeakyHandler.postDelayed(new Runnable() { @Override public void run() { /* ... */ } }, 1000 * 60 * 10); // Go back to the previous Activity. finish(); }

} 在该SampleActivity中声明了一个延迟10分钟执行的消息 Message,mLeakyHandler 将其 push 进了消息队列 MessageQueue 里。当该 Activity 被 finish() 掉时,延迟执行任务的 Message 还会继续存在于主线程中,它持有该 Activity 的 Handler 引用,所以此时 finish() 掉的 Activity 就不会被回收了从而造成内存泄漏(因 Handler 为非静态内部类,它会持有外部类的引用,在这里就是指 SampleActivity)。 修复方法:在 Activity 中避免使用非静态内部类,比如上面我们将 Handler 声明为静态的,则其存活期跟 Activity 的生命周期就无关了。同时通过弱引用的方式引入 Activity,避免直接将 Activity 作为 context 传进去,见下面代码 public class SampleActivity extends Activity {

/** * Instances of static inner classes do not hold an implicit * reference to their outer class. */ private static class MyHandler extends Handler { private final WeakReference mActivity;

public MyHandler(SampleActivity activity) { mActivity = new WeakReference<SampleActivity>(activity); } @Override public void handleMessage(Message msg) { SampleActivity activity = mActivity.get(); if (activity != null) { // ... } }

}

private final MyHandler mHandler = new MyHandler(this);

/** * Instances of anonymous classes do not hold an implicit * reference to their outer class when they are “static”. */ private static final Runnable sRunnable = new Runnable() { @Override public void run() { /* … */ } };

@Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState);

// Post a message and delay its execution for 10 minutes. mHandler.postDelayed(sRunnable, 1000 * 60 * 10); // Go back to the previous Activity. finish();

} } 综述,即推荐使用静态内部类 + WeakReference 这种方式 f.尽量避免使用static成员变量 如果成员变量被声明为 static,那我们都知道其生命周期将与整个app进程生命周期一样。这会导致一系列问题,如果你的app进程设计上是长驻内存的,那即使app切到后台,这部分内存也不会被释放。按照现在手机app内存管理机制,占内存较大的后台进程将优先回收,yi’wei如果此app做过进程互保保活,那会造成app在后台频繁重启。当手机安装了你参与开发的app以后一夜时间手机被消耗空了电量、流量,你的app不得不被用户卸载或者静默。 这里修复的方法是: 不要在类初始时初始化静态成员。可以考虑lazy初始化。 架构设计上要思考是否真的有必要这样做,尽量避免。如果架构需要这么设计,那么此对象的生命周期你有责任管理起来。 g.避免override finalize() 1、finalize 方法被执行的时间不确定,不能依赖于它来释放紧缺的资源。时间不确定的原因是: 虚拟机调用GC的时间不确定 Finalize daemon线程被调度到的时间不确定 2、finalize 方法只会被执行一次,即使对象被复活,如果已经执行过了 finalize 方法,再次被 GC 时也不会再执行了,原因是: 含有 finalize 方法的 object 是在 new 的时候由虚拟机生成了一个 finalize reference 在来引用到该Object的,而在 finalize 方法执行的时候,该 object 所对应的 finalize Reference 会被释放掉,即使在这个时候把该 object 复活(即用强引用引用住该 object ),再第二次被 GC 的时候由于没有了 finalize reference 与之对应,所以 finalize 方法不会再执行。 3、含有Finalize方法的object需要至少经过两轮GC才有可能被释放。 h. 资源未关闭造成的内存泄漏 对于使用了BraodcastReceiver,ContentObserver,File,游标 Cursor,Stream,Bitmap等资源的使用,应该在Activity销毁时及时关闭或者注销,否则这些资源将不会被回收,造成内存泄漏。 i.代码不规范造成的内存压力 有些代码并不造成内存泄漏,但是它们,或是对没使用的内存没进行有效及时的释放,或是没有有效的利用已有的对象而是频繁的申请新内存。 比如: Bitmap 没调用 recycle()方法,对于 Bitmap 对象在不使用时,我们应该先调用 recycle() 释放内存,然后才它设置为 null. 因为加载 Bitmap 对象的内存空间,一部分是 java 的,一部分 C 的(因为 Bitmap 分配的底层是通过 JNI 调用的 )。 而这个 recyle() 就是针对 C 部分的内存释放。 构造 Adapter 时,没有使用缓存的 convertView ,每次都在创建新的 converView。这里推荐使用 ViewHolder。

转载请注明原文地址: https://www.6miu.com/read-3353.html

最新回复(0)