gcj d题 Fashion Show 二分匹配

xiaoxiao2021-02-27  310

题目大意 给定N*N的棋盘和一些士兵,士兵有三种分别为'x','+','o',如果没有士兵则用'.'表示。一个格子最多放置一个士兵,并满足以下要求 1、任意两个在同一条横线或者竖线上的士兵中必须有一个'+' 2、任意两个在同一条斜线上的士兵中必须有一个'x' 现在可以进行的操作是: 1、将已存在的士兵'x'或者'+'升级为'o' 2、将任意一种士兵放在空格子上 问最佳操作,最大化棋盘的分数,棋盘的分数是'x'的数量加'+'的数量加'o'的两倍数量

一个'o'可以表示为一个'+'和一个'x'叠加在一起,所以原问题被拆成了两个子问题:

1、在一个棋盘中最多放置多少个'+',满足约束,每一个斜线中最多只有一个“+‘

2、在一个棋盘中最多放置多少个'x',满足约束,每行每列中最多只有一个'x'

上述两个问题都可以转化为二分匹配问题,对于第二个,左面的点是横坐标x,右面的点是纵坐标y,连接x和y当且仅当x,y这两条直线上没有'x'

同理对于第一个问题,x+y确定一条右上的斜线,x-y确定一条右下的直线,与第一个问题类似建边方式。

代码来自通神orz。。

#include <bits/stdc++.h> using namespace std; const int MAXN = 410; const int MAXM = 20010; const int INF = 1e9; vector<int> G[MAXN]; int cx[MAXN], cy[MAXN]; int dx[MAXN], dy[MAXN]; bool mark[MAXN]; int N; int searchPath() { memset(dx, -1, sizeof(dx)); memset(dy, -1, sizeof(dy)); queue<int> Q; for (int i = 1; i <= N; i++) if (cx[i] == -1) { dx[i] = 0; Q.push(i); } int dist = INF; while (!Q.empty()) { int u = Q.front(); Q.pop(); if (dx[u] > dist) break; for (int i = 0; i < (int)G[u].size(); i++) { int v = G[u][i]; if (dy[v] == -1) { dy[v] = dx[u] + 1; if (cy[v] == -1) { dist = dy[v]; } else { dx[cy[v]] = dy[v] + 1; Q.push(cy[v]); } } } } return dist != INF; } int findPath(int u) { for (int i = 0; i < (int)G[u].size(); i++) { int v = G[u][i]; if (!mark[v] && dy[v] == dx[u] + 1) { mark[v] = true; if (cy[v] == -1 || findPath(cy[v])) { cy[v] = u; cx[u] = v; return 1; } } } return 0; } int MaxMatch() { int res = 0; memset(cx, -1, sizeof(cx)); memset(cy, -1, sizeof(cy)); while (searchPath()) { memset(mark, false, sizeof(mark)); for (int i = 1; i <= N; i++) { if (cx[i] == -1) { res += findPath(i); } } } return res; } // = =============== main function =========================== char a[110][110], b[110][110]; bool hasxx[MAXN], hasxy[MAXN]; bool haspx[MAXN], haspy[MAXN]; int main(void) { int T; cin >> T; for (int t = 1; t <= T; ++ t) { int n, m; cin >> n >> m; for (int i = 1; i <= n; ++ i) for (int j = 1; j <= n; ++ j) { a[i][j] = b[i][j] = '.'; } memset(hasxx, false, sizeof(hasxx)); memset(hasxy, false, sizeof(hasxy)); memset(haspx, false, sizeof(haspx)); memset(haspy, false, sizeof(haspy)); for (int i = 0; i < m; ++ i) { char ch; int x, y; cin >> ch >> x >> y; a[x][y] = b[x][y] = ch; if (ch == 'x') { hasxx[x] = hasxy[y] = true; } else if (ch == '+') { haspx[x - y + n] = haspy[x + y + n + n] = true; } else { hasxx[x] = hasxy[y] = true; haspx[x - y + n] = haspy[x + y + n + n] = true; } } N = n * 4; for (int i = 1; i <= N; ++ i) G[i].clear(); for (int i = 1; i <= n; ++ i) { for (int j = 1; j <= n; ++ j) if (b[i][j] == '.' or b[i][j] == '+') { if (hasxx[i] or hasxy[j]) continue; G[i].emplace_back(j + n); //G[j + n].emplace_back(i); } } int tmp1 = MaxMatch(); //cerr << "tmp1: " << tmp1 << endl; for (int i = 1; i <= n; ++ i) if (cx[i] != -1) { int j = cx[i] - n; if (b[i][j] == '.') b[i][j] = 'x'; else b[i][j] = 'o'; } N = 4 * n; for (int i = 1; i <= N; ++ i) G[i].clear(); for (int i = 1; i <= n; ++ i) { for (int j = 1; j <= n; ++ j) if (b[i][j] == '.' or b[i][j] == 'x') { int x = i - j + n; int y = i + j + n + n; if (haspx[x] or haspy[y]) continue; G[x].emplace_back(y); //G[y].emplace_back(x); } } int tmp2 = MaxMatch(); //cerr << "tmp2: " << tmp2 << endl; for (int k = 1; k <= n + n; ++ k) { if (cx[k] != -1) { int i = (k + cx[k] - n * 3) / 2; int j = (cx[k] - n - k) / 2; if (b[i][j] == '.') b[i][j] = '+'; else if (b[i][j] == 'x') b[i][j] = 'o'; } } int ans = 0, cnt = 0; for (int i = 1; i <= n; ++ i) for (int j = 1; j <= n; ++ j) { if (b[i][j] == 'o') ans += 2; else if (b[i][j] != '.') ans += 1; if (a[i][j] != b[i][j]) ++ cnt; } cout << "Case #" << t << ": " << ans << ' ' << cnt << endl; for (int i = 1; i <= n; ++ i) for (int j = 1; j <= n; ++ j) { if (a[i][j] != b[i][j]) { cout << b[i][j] << ' ' << i << ' ' << j << endl; } } } return 0; }

转载请注明原文地址: https://www.6miu.com/read-3816.html

最新回复(0)