NIPS 2016 主题概览

xiaoxiao2021-02-27  370

NIPS 2016最全盘点:主题详解、前沿论文及下载资源

《吴恩达 NIPS 2016 演讲现场直击:如何使用深度学习开发人工智能应用?》 「nuts and bolts of building AI」

Scale driving Deep Learning progressesthe rise of end-to-end learning:更纯粹,但需要更大的训练集机器学习策略:如何有效地处理数据集 Avoidable bias + Variance = bias-variance trade-off(偏差-方差权衡)Training error high? -> Bias: bigger model, train longer, new model architecture. Dev error high? -> Variance: more data, regularization, new model architecture.Data Synthesis 开发集和测试集要遵从相同的数据分布(distribution),也可以拿出训练集中的一部分内容作为训练-开发集(train-dev set)Training error high? -> Bias: bigger model, train longer, new model architecture Training-Dev error high? -> Variance: more data, regularization, new model architecture Dev set error high? -> Train-test data mismatch: make training data more similar to test data, data synthesis(Domain adaptation),New model architecture Test set error high? -> Overfit dev set: more dev set data关于人工智能的未来 迁移学习(transfer learning)人工智能产品管理(AI product management)《GAN 之父 NIPS 2016 演讲现场直击:全方位解读生成对抗网络的原理及未来》 … Tips and Tricks 把数据标签给 GAN -> one-sided label smoothing(单边标签平滑)Batch Norm: 取「一批」数据,把它们给规范化(normalise)一下(减平均值,除以标准差)。 问题: 同一批(batch)里面的数据太过相似,对一个无监督的 GAN 而言,很容易被带偏而误认为它们这些数据都是一样的。也就是说,最终的生成模型的结果会混着同一个 batch 里好多其它特征。这不是我们想要的形式 -> Reference Batch Norm: 取出一批数据(固定的)当作我们的参照数据集 R。然后把新的数据 batch 都依据 R 的平均值和标准差来做规范化。 问题: 如果 R 取得不好,效果也不会好。或者,数据可能被 R 搞得过拟合。换句话说:我们最后生成的数据可能又都变得跟 R 很像 -> Virtual Batch Norm: 取出 R,但是所有的新数据 x 做规范化的时候,我们把 x 也加入到 R 中形成一个新的 virtual batch V。并用这个 V 的平均值和标准差来标准化 x。这样就能极大减少 R 的风险。平衡好 G 和 D 使用非饱和(non-saturating)博弈来写目标函数,保证 D 学完之后,G 还可以继续学习;使用标签平滑化。问题 不稳定,很多情况下都无法收敛(non-convergence):局部最优解,模式崩溃(mode collapse)-> minibatch GAN, unrolling GAN评估离散输出强化学习的连接结合 PGN(Plug and Play Generative Models/即插即用生成模型)(Nguyen et al, 2016)video, pdf

《Bengio 和 LeCun 在 NIPS 2016 上的演讲》

1.【生物学可信深度学习】《Towards biologically plausible deep learning》by Yoshua Bengio 2.【能量 GAN 与对抗方法】《Energy-Based GANs & other Adversarial things》by Yann LeCun

论文推荐 部分 对话模型的对抗式评估(Adversarial Evaluation of Dialogue Models)。构建像人一样学习和思考的机器(Building Machines That Learn and Think Like People)理解深度学习需要重新思考泛化(Understanding deep learning requires rethinking generalization)

资源 NIPS 2016 Annual MeetingPeter Abbeel, “Tutorial: Deep Reinforcement Learning through Policy Optimization” - http://people.eecs.berkeley.edu/~pabbeel/nips-tutorial-policy-optimization-Schulman-Abbeel.pdfYoshua Bengio, “Towards a Biologically Plausible Model of Deep Learning” - http://www.iro.umontreal.ca/~bengioy/talks/Brains+Bits-NIPS2016Workshop.pptx.pdfMathieu Blondel, “Higher-order Factorization Machines” - http://www.mblondel.org/talks/mblondel-stair-2016-09.pdfKyle Cramer (keynote), “Machine Learning & Likelihood Free Inference in Particle Physics” -https://figshare.com/articles/NIPS_2016_Keynote_Machine_Learning_Likelihood_Free_Inference_in_Particle_Physics/4291565Xavier Giro, “Hierarchical Object Detection with Deep Reinforcement Learning” - http://www.slideshare.net/xavigiro/hierarchical-object-detection-with-deep-reinforcement-learningIan Goodfellow, “Adversarial Approaches to Bayesian Learning and Bayesian Approaches to Adversarial Robustness” -http://www.iangoodfellow.com/slides/2016-12-10-bayes.pdfIan Goodfellow, “Tutorial: Introduction to Generative Adversarial Networks” - http://www.iangoodfellow.com/slides/2016-12-9-gans.pdfNeil Lawrence, “Personalized Health: Challenges in Data Science” - Personalized Health: Challenges in Data ScienceYann LeCun, “Energy-Based GANs & other Adversarial things” - https://drive.google.com/file/d/0BxKBnD5y2M8NbzBUbXRwUDBZOVU/viewYann LeCun (keynote), “Predictive Learning” - https://drive.google.com/file/d/0BxKBnD5y2M8NREZod0tVdW5FLTQ/viewValerio Maggio, “Deep Learning for Rain and Lightning Nowcasting” - https://speakerdeck.com/valeriomaggio/deep-learning-for-rain-and-lightning-nowcasting-at-nips2016Sara Magliacane, “Joint causal inference on observational and experimental data” - http://www.slideshare.net/SaraMagliacane/talk-joint-causal-inference-on-observational-and-experimental-data-nips-2016-what-if-workshop-posterAndrew Ng, “Nuts and Bolts of Building Applications using Deep Learning” - https://www.dropbox.com/s/dyjdq1prjbs8pmc/NIPS2016 - Pages 2-6 (1).pdfJohn Schulman, “The Nuts and Bolts of Deep RL Research” - http://rll.berkeley.edu/deeprlcourse/docs/nuts-and-bolts.pdfDustin Tran, “Tutorial: Variational Inference: Foundations and Modern Methods” - http://www.cs.columbia.edu/~blei/talks/2016_NIPS_VI_tutorial.pdfJenn Wortman Vaughan, “Crowdsourcing: Beyond Label Generation” - http://www.jennwv.com/projects/crowdtutorial/crowdslides.pdfReza Zedah, “FusionNet: 3D Object Classification Using Multiple Data Representations” - http://matroid.com/papers/fusionnet_slides.pdf
转载请注明原文地址: https://www.6miu.com/read-3938.html

最新回复(0)