spark rdd 和 DF 转换

xiaoxiao2021-02-27  374

RDD   -》 DF

 

有两种方式

一、

 

一、Inferring the Schema Using Reflection

 

将 RDD[t]   转为一个 object ,然后 to df

 

val peopleDF = spark.sparkContext .textFile("examples/src/main/resources/people.txt") .map(_.split(",")) .map(attributes => Person(attributes(0), attributes(1).trim.toInt)) .toDF()

 

 

rdd 也能直接装 DATASet  要  import 隐式装换 类 import spark.implicits._

 如果  转换的对象为  tuple .   转换后  下标为 _1  _2   .....

 

 

 

二、Programmatically Specifying the Schema

 

把 columnt meta  和  rdd   createDataFrame 在一起

 

val peopleRDD = spark.sparkContext.textFile("examples/src/main/resources/people.txt") // The schema is encoded in a string val schemaString = "name age" // Generate the schema based on the string of schema val fields = schemaString.split(" ") .map(fieldName => StructField(fieldName, StringType, nullable = true)) val schema = StructType(fields)

 

val rowRDD = peopleRDD .map(_.split(",")) .map(attributes => Row(attributes(0), attributes(1).trim)) // Apply the schema to the RDD val peopleDF = spark.createDataFrame(rowRDD, schema) // Creates a temporary view using the DataFrame peopleDF.createOrReplaceTempView("people")

 

 

 

 

 

 

DF  to  RDd

 

val tt = teenagersDF.rdd

转载请注明原文地址: https://www.6miu.com/read-3957.html

最新回复(0)