BEST FIRST SEARCH算法

xiaoxiao2025-04-05  9

**BEST FIRST SEARCH算法**

Korf illustrated the workings of this algorithm with a binary tree where f(N) = the depth of node N.  What follows is a brief, structured description of how the algorithm works in this case.  It is best to try to work the algorithm on your own on paper and use this as a reference to check your work. Nodes in the binary tree are named A, B, C, … from left-to-right, top-to-bottom.  Assume the tree is infinite and has no goal.  Note that the stored value F(N) is different from f(N).  When sorted children are listed (e.g. “B(1) C(1)”), the number inside the parentheses is the stored value.  Recursive calls are indented; the first line is the initial call on the root. 代码块:

RBFS (node: N, value: F(N), bound: B) IF f(N)>B, RETURN f(N) IF N is a goal, EXIT algorithm IF N has no children, RETURN infinity FOR each child Ni of N,   IF f(N)<F(N), F[i] := MAX(F(N),f(Ni))   ELSE F[i] := f(Ni) sort Ni and F[i] in increasing order of F[i] IF only one child, F[2] := infinity WHILE (F[1] <= B and F[1] < infinity)   F[1] := RBFS(N1, F[1], MIN(B, F[2]))   insert Ni and F[1] in sorted order RETURN F[1] ## 分割线  RBFS(A, 0, 4) f(A)=F(A), so F(B)=f(B)=1, F(C)=f(C)=1 Sorted children: B(1) C(1) F(B)< 4, so      RBFS(B, 1, 1)      f(B)=F(B), so F(D)=f(D)=2, F(E)=f(E)=2      Sorted children: D(2) E(2)      F(D)>1, so return 2 F(B)=2 Sorted children: C(1) B(2) F(C)< 4, so      RBFS(C, 1, 2)      f(C)=F(C), so F(F)=f(F)=2, F(G)=f(G)=2      Sorted children: F(2) G(2)      F(F)<=2, so            RBFS(F, 2, 2)            … search F’s children to 2 returning min cost beyond …            return 3      F(F)=3      Sorted children: G(2) F(3)      F(G)<=2, so            RBFS(G, 2, 2)            … search G’s children to 2 returning min cost beyond …            return 3      F(G)=3      Sorted children: F(3) G(3)      F(F)>2, so return 3 F(C)=3 Sorted children: B(2) C(3) F(B)< 4, so      RBFS(B, 2, 3)      f(B)<F(B), so F(D)=MAX(F(B),f(D))=2,    F(E)=MAX(F(B),f(E))=2      Sorted children: D(2) E(2)      F(D)<=3, so RBFS(D, 2, 2) … search D’s children to 2 returning min cost beyond … return 3      F(D)=3      Sorted children: E(2) D(3)      F(E)<=3, so RBFS(E, 2, 3) … search E’s children to 3 returning min cost beyond … return 4      F(E)=4 Sorted children: D(3) E(4) F(D)<=3, so RBFS(D, 3, 3) … search D’s children to 3 returning min cost beyond … return 4      F(D)=4 Sorted children: E(4) D(4) F(E)>3, so return 4 F(B)=4 Sorted children: C(3) B(4) F(C)< 4, so      RBFS(C, 3, 4)      … search C’s children to 4 returning min cost beyond …      return 5 F(C)=5 Sorted children: B(4) C(5) F(B)< 4, so      RBFS(B, 4, 5)      … search B’s children to 5 returning min cost beyond …      return 6 F(B)=6 Sorted children: C(5) B(6) **and so  on。。。。**

 

转载请注明原文地址: https://www.6miu.com/read-5027505.html

最新回复(0)